Photo by N. Roenner and G. Rein (Imperial College London) and R. Hadden (University of Edinburgh)
This composite shows the pyrolysis and burning of a sample (10 cm x 10
cm x 1.5 cm) of transparent Poly-methyl methacrylate (PMMA, Perspex)
inside a Fire Propagation Apparatus (FPA).
The central image shows the diffusion flame established on top of the sample which is surrounded by the infrared lamps emitting a transient heat flux peaking at 30 kW after 300 s. The series to the right show the evolution of the PMMA sample during the fire. This was created by extracting samples at different times from identical experimental repeats.
PMMA is typically chosen for fire experiments because it is the polymer for which the flammability behaviour is best known. Despite this, the intricacy involved is patent. The melting, bubbling and pyrolysis mechanisms all contribute to create a dynamic image of the sample's history which illustrate the high complexity and beauty of fire phenomena.
The central image shows the diffusion flame established on top of the sample which is surrounded by the infrared lamps emitting a transient heat flux peaking at 30 kW after 300 s. The series to the right show the evolution of the PMMA sample during the fire. This was created by extracting samples at different times from identical experimental repeats.
PMMA is typically chosen for fire experiments because it is the polymer for which the flammability behaviour is best known. Despite this, the intricacy involved is patent. The melting, bubbling and pyrolysis mechanisms all contribute to create a dynamic image of the sample's history which illustrate the high complexity and beauty of fire phenomena.
Licensed under a Creative Commons CC BY-NC-ND 3.0.
No comments:
Post a Comment