Sunday 5 June 2016

ERC HAZE: Reducing the Burden of Smouldering Megafires

I am delighted to announce that I recently won a Consolidator Grant from European Research Council (ERC) for my group, Imperial Hazelab. With a total budget of €2m and 5 years ahead, I will be leading the project HAZE in Reducing the Burden of Smouldering Megafires: an Earth-Scale Challenge.


Dr Rein during a field trip making measurements
on an ongoing smouldering fire
.
Smouldering megafires are the largest and longest-burning fires on Earth. They destroy essential peatland ecosystems, and are responsible for 15% of annual global greenhouse gas emissions. This is the same amount attributed to the whole fleet of road vehicles worldwide (or 10 times the carbon footprint of the UK), and yet it is not accounted for in global carbon budgets. Peat fires also induce surges of respiratory emergencies in the population and disrupt shipping and aviation routes for long periods, weeks even months.

The ambition of HAZE is to advance the science and create the technology that will reduce the burden of smouldering fires. Despite their importance, we do not understand how smouldering fires ignite, spread or extinguish, which impedes the development of any successful mitigation strategy. Megafires are routinely fought across the globe with techniques that were developed for flaming fires, and are thus ineffective for smouldering. Moreover, the burning of deep peat affects older soil carbon that has not been part of the active carbon cycle for centuries to millennia, and thus creates a positive feedback to the climate system.

HAZE wants to turn the challenges faced by smouldering research into opportunities and has the following three novel aims:
  1. Conduct controlled laboratory experiments and discover how peat fires ignite, spread and extinguish.
  2. Develop multidimensional computational models for the field scale (~1 km) and simulate the real phenomena.
  3. Create pathways for novel mitigation technologies in accurate prevention, quick detection systems, and simulation-driven suppression strategies.
With this research project, Europe and Imperial Hazelab have the chance to lead the way and pioneer technologies against this Earth-scale and important but unconventional source of emissions.

Aerosol imaging by NASA of Oct 1997 showing the haze released by peat megafires in Borneo. 
Visual and overlaid infrared imaging of radial smouldering spread over a sample of peat ignited at the centre. See our original photo here.

Thursday 2 June 2016

Welcome Yuqi and Franz to Imperial Hazelab

During 2015, Hazelab grew with two new PhD students who joined the Department of Mechanical Engineering, Yuqi Hu and Franz Richter.

Yuqi Hu is from China. He became a Safety Engineer from the China University of Geosciences in 2012 with a BSc degree, and then obtained an MSc degree from University Of Science and Technology of China in 2015. At USTC, Yuqi studied experimentally the small particles in the smoke of cigarettes. Now at Hazelab, the preliminary title of his thesis is "Experimental Investigation of Peat Fire Emissions and Haze Phenomena" and is funded by China Scholarship Council.
Franz Richter is from Germany. He became a Mechanical Engineering from Imperial College London in 2015 with a MEng degree. During this final year project, Franz studied computationally how the spread of non-uniform fires in a building affect the charring of timber structures. Now at Hazelab, the preliminary title of his thesis is "Computational pyrolysis of timber in fire" and is funded by EPSRC and Arup.