Saturday, 30 May 2015

Research grant on travelling fires with Michigan

Egle Rackauskaite, PhD student
at the Imperial Hazelab.
I am delighted to announce that we have won a research grant from SFPE that will fund our summer collaboration with the group of Prof. Ann Jeffers at University of Michigan, Ann Arbor.

As we speak, my PhD student Egle Rackauskaite is at Ann Arbor working for the summer. She will use the SFPE Foundation Student Research Grant to continue the development of the pioneering design concept of 'travelling fires'.


Innovative architectural designs of new high rise structures already pose a challenge to engineers. This is above all the case in structural fire protection engineering. Understanding of fundamental mechanisms of whole building behaviour in fire has significantly increased in the last decades; however, most of this understanding is based on the assumption of uniform fires in a compartment. Recent work has shown that while the uniform fire assumption may be suitable for small enclosures, the large, open-plan compartments, typical of modern architecture, do not burn simultaneously throughout the whole enclosure. Instead, these fires tend to move across the floor plates as flames spread, burning over a limited area at any one time. These fires are referred to as travelling fires.


A travelling fire is a structural design concept that accounts for the spread of the flames along a large compartment. This creates two dynamic heating regimes to any structural element; the quick but intense heating by the direct impingement of the flames (near field), and the slow but limited heating by the smoke (far field).


Travelling fires challenge the design assumptions made in most design codes. Understanding the effects of travelling fires on structures is important for the development of modern cities with increased resilience to fire. Our work offers a paradigm shift in the structural engineering of modern buildings, and is directly impacting the way industry designs modern infrastructure and has already been applied to design a dozen iconic buildings in London, Manchester and Birmingham.

More information on travelling fires, see: